首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19964篇
  免费   3226篇
  国内免费   3270篇
化学   15074篇
晶体学   430篇
力学   1173篇
综合类   288篇
数学   2245篇
物理学   7250篇
  2024年   10篇
  2023年   279篇
  2022年   448篇
  2021年   581篇
  2020年   725篇
  2019年   720篇
  2018年   594篇
  2017年   632篇
  2016年   861篇
  2015年   911篇
  2014年   1076篇
  2013年   1513篇
  2012年   1760篇
  2011年   1870篇
  2010年   1434篇
  2009年   1276篇
  2008年   1459篇
  2007年   1234篇
  2006年   1217篇
  2005年   1170篇
  2004年   914篇
  2003年   741篇
  2002年   759篇
  2001年   618篇
  2000年   579篇
  1999年   442篇
  1998年   308篇
  1997年   286篇
  1996年   282篇
  1995年   266篇
  1994年   227篇
  1993年   198篇
  1992年   177篇
  1991年   150篇
  1990年   135篇
  1989年   121篇
  1988年   96篇
  1987年   65篇
  1986年   67篇
  1985年   70篇
  1984年   42篇
  1983年   36篇
  1982年   30篇
  1981年   24篇
  1980年   17篇
  1979年   13篇
  1978年   5篇
  1965年   2篇
  1957年   6篇
  1936年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).  相似文献   
82.
As redox-active based supercapacitors are known as highly desirable next-generation supercapacitor electrodes, the targeted design of two ferrocene-functionalized (Fc(COOH)2) clusters based on coinage metals, [(PPh3)2AgO2CFcCO2Ag(PPh3)2]2 ⋅ 7 CH3OH (SC1: super capacitor) and [(PPh3)3CuO2CFcCO2Cu(PPh3)3] ⋅ 3 CH3OH (SC2), is reported. Both structures are fully characterized by various techniques. The structures are utilized as energy storage electrode materials, giving 130 F g−1 and 210 F g−1 specific capacitance at 1.5 A g−1 in Na2SO4 electrolyte, respectively. The obtained results show that the presence of CuI instead of AgI improves the supercapacitive performance of the cluster. Further, to improve the conductivity, the PSC2 ([(PPh3)2CuO2CFcCO2]), a polymeric structure of SC2, was synthesized and used as an energy storage electrode. PSC2 displays high conductivity and gives 455 F g−1 capacitance at 3 A g−1. The PSC2 as a supercapacitor electrode presents a high power density (2416 W kg−1), high energy density (161 Wh kg−1), and long cycle life over 4000 cycles (93 %). These results could lead to the amplification of high-performance supercapacitors in new areas to develop real applications and stimulate the use of the targeted design of coordination polymers without hybridization or compositions with additive materials.  相似文献   
83.
The construction of nano-scale hybrid materials with a smart interfacial structure, established by using rare earth oxides and carbon as building blocks, is essential for the development of economical and efficient catalysts for oxygen reduction reactions (ORRs). In this work, hexagonal La2O3 nanocrystals on a nitrogen-doped porous carbon (NPC) derived from crop radish, served as building bricks, are prepared by chemical precipitation and then calcination at elevated temperatures. The obtained La2O3/NPC hybrid exhibits a very high ORR activity with a half-wave potential of 0.90 V, exceeding that of commercial Pt/C (0.83 V). Both DFT theoretical and experimental results have verified that the significantly enhanced catalytic performance is ascribed to the formation of the C−O−La covalent bonds between carbon and La2O3. Through the covalent bonds, electrons can transfer from the carbon to La2O3 and occupy the unfilled eg orbital of the La2O3 phase. This results in the accelerated adsorption of active oxygen and the facilitated desorption of the surface hydroxides (OHad), thereby promoting the ORR over the catalyst.  相似文献   
84.
85.
Newly established in 2018, the UK Research and Innovation (UKRI) strengthens the strategic coordination of the UK research and innovation system by bringing together seven Research Councils, Research England, and Innovate UK. Through its nine organizations, UKRI funds multidisciplinary and interdisciplinary research in a number of priority areas. It also runs the Strategic Priorities Fund to support multidisciplinary and interdisciplinary research in strategic areas identified by government policies as well as the Global Challenges Research Fund to promote challenge-led interdisciplinary research needed by developing countries. The UKRI makes significant efforts to engage stakeholders in the development, design, and implementation of multidisciplinary and interdisciplinary programs. It has also developed a range of mechanisms to improve the evaluation of multidisciplinary and interdisciplinary projects. Chinese science and innovation funding agencies could draw upon the UKRI experience from four aspects to advance interdisciplinary research in China.  相似文献   
86.
A series of chemical vapor deposition (CVD) precursors have been synthesized by a single-step reaction of 1,1,3,3-tetramethylguanidine and a variety of silicon chlorides. The structures of the 1,1,3,3-tetramethylguanidinate-based compounds were verified by 1H NMR, 13C NMR, XPS, EI-MS, and elemental analysis. The thermal stability, transport behavior, and vapor pressures of these compounds were evaluated by simultaneous thermal analyses (STA). These compounds are highly stable and those in liquid form are very volatile. Silicon carbonitride (SiCN) thin films were prepared by using bis (tetramethylguanidine)-dimethyl-silane as the precursor in helicon wave plasma chemical vapor deposition (HWP-CVD). The properties of the films were investigated by SEM, AFM, and XPS. The results showed that the films have good uniformities, low friction coefficient, and high hardness, enabling the films for fabrication of semiconductor devices.  相似文献   
87.
In this study, Pd based on 2-Aminopyrimidine and 1H-benzo[d]imidazol-2-amine functionalized Fe3O4 magnetic nanoparticles [(Pd-APM-PSi-Fe3O4) and (Pd-BIA-PSi-Fe3O4)] was designed and used for the synthesis of di aryl ether by Ulmann cross-coupling reactions. Ulmann reaction performed with mixing of the arylhalides and phenol derivatives in DMF solvent. The prepared catalysts were characterized with various analytical techniques such as FT-IR, XRD, TGA, SEM, TEM, EDX, ICP and VSM. Pd-APM-PSi-Fe3O4 and Pd-BIA-PSi-Fe3O4 catalysts demonstrated good to excellent yields catalytic efficiency for Ulmann reactions in comparison with to commercial palladium catalysts. The catalyst is easily recycled and reused without loss of the catalytic activity. The combined merits of reusable catalyst conditions make the condensation with safe operation, no leaching of pd into environment, low pollution, rapid access to products and simple workup. Also, these novel magnetic nanocatalysts are superior to the industry standard Pd in every relevant aspect. They feature a way higher initial activity, a much more convenient separation, better recycling, and less contamination of the products. Last but not least, they can be very easily prepared from commercially available Fe3O4 nanoparticles using standard laboratory equipment.  相似文献   
88.
89.
Recent research has focused on increasing the evidentiary value of latent fingerprints through chemical analysis. Although researchers have optimized the use of organic and metal matrices for matrix‐assisted laser desorption/ionization‐mass spectrometry imaging (MALDI‐MSI) of latent fingerprints, the use of development powders as matrices has not been fully investigated. Carbon forensic powder (CFP), a common nonporous development technique, was shown to be an efficient one‐step matrix; however, a high‐resolution mass spectrometer was required in the low mass range due to carbon clusters. Titanium oxide (TiO2) is another commonly used development powder, especially for dark nonporous surfaces. Here, forensic TiO2 powder is utilized as a single‐step development and matrix technique for chemical imaging of latent fingerprints without the requirement of a high‐resolution mass spectrometer. All studied compounds were successfully detected when TiO2 was used as the matrix in positive mode, although, generally, the overall ion signals were lower than the previously studied CFP. TiO2 provided quality mass spectrometry (MS) images of endogenous and exogenous latent fingerprint compounds. The subsequent addition of traditional matrices on top of the TiO2 powder was ineffective for universal detection of latent fingerprint compounds. Forensic TiO2 development powder works as an efficient single‐step development and matrix technique for MALDI‐MSI analysis of latent fingerprints in positive mode and does not require a high‐resolution mass spectrometer for analysis.  相似文献   
90.
Transport in Porous Media - The effective slip length at the interface between pure fluid flow and porous media composed of packed spheres has been accurately characterized. In this study, as the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号